EDP Sciences © Società Italiana di Fisica Springer-Verlag 2000

Erratum

A polymer chain trapped between two parallel repulsive walls: A Monte-Carlo test of scaling behavior

A. Milchev^{1,a} and K. Binder^{2,b}

 $^{\rm 1}$ Institute for Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Eur. Phys. J. B 3, 477–484 (1998)

F. Schlesener kindly pointed out that in the scaling plot for the force, Df, $versus\ D/R_{gb}$ in our Figure 4, the data was plotted with the wrong set of values for the radius of gyration R_{gb} . The Df data points have been plotted erroneously $versus\ D/\sqrt{R_{gb}}$, rather than $versus\ D/R_{gb}$. In Table 1 the value for f at D=16 and N=512 is f=0.327 rather than the mistyped value of 0.917.

For completeness we give below the values of the mean squared gyration radii R_{gb} of single unperturbed polymer chains of length N which were used in our simulations (A. Milchev, K. Binder, Eur. Phys. J. B 3, 477 (1998)).

N	32	64	128	256	512
R_{ab}^2	6.31	14.59	34.74	78.44	178.3

When replotted *versus* the correct ration D/R_{gb} , Figure 4 reveals a better agreement with the predicted scaling behavior of $Df \propto \left(\frac{D}{R_{gb}}\right)^{-\frac{1}{\nu}}$.

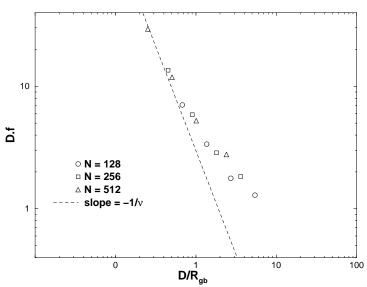


Fig. 4. Scaling plot for the force, Df versus D/R_{gb} . The dashed straight line indicates the slope that the scaling function should exhibit for small D/R_{gb} .

² Institut für Physik, Johannes Gutenberg-Universität Mainz 55099 Mainz, Staudinger Weg 7, Germany

^a e-mail: milchev@plato.physik.uni-mainz.de

b e-mail: binder@chaplin.physik.uni-mainz.de